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The Wigner projection operator used in group theory for finding symmetry-adapted states in quantum 
mechanics is represented as a matrix in a given basis of trial state vectors. By diagonalizing this projection 
matrix, the redundancies occurring when the projection operator is applied directly are removed auto­
matically. A straightforward method is given for this diagonalization procedure using only gen­
eral properties of projection matrices. This method has proved very powerful in numerical applications 
using electronic computers. Particularly for the ligand-field treatment of a part of a crystal or in the case of a 
molecule of general point-group symmetry, the projection matrix to be used in the MO-LCAO method is con­
structed and simplified. This is done also for the nonsymmorphic space groups of crystals in the tight-bind­
ing approximation of band theory. The whole procedure of constructing symmetry-adapted states in this 
case has been programmed for an electronic computer. 

1. INTRODUCTION 

THE importance of using group theory in applica­
tions of quantum theory is nowadays realized 

more and more. The symmetry properties of a quantum-
mechanical system being investigated are useful not 
only in order to systematize the obtained results, but 
they also yield a considerable simplification for the 
numerical treatment of the problem. This is extremely 
essential also when big electronic computers are used. 

The fundaments of group theory can be found in 
many text books which consider application to quantum 
theory.1"-4 For the construction of symmetry-adapted 
states in quantum theory the Wigner projection opera­
tor1 is fundamental. 

In many-particle quantum theory, the group of per­
mutations among identical particles is necessary for 
systematization of the states. Particularly for the quan­
tum theory of electrons in atoms, molecules, and solids, 
the antisymmetrical representation of this group de­
scribes the many-electron states in accordance with the 
Pauli exclusion principle. When it is possible to separate 
space and spin coordinates, however, other representa­
tions of the permutation group may also become 
important. 

Except for the permutation symmetry, the space 
symmetry of the electronic potential due to the distri­
bution of atomic nuclei in their equilibrium positions is 
the one of great importance. The theory presented here 
will be applied, in particular, to space groups for crys­
tals using MO-LCAO methods. 

Crystal space symmetry has been known for a long 
time to be the foundation by means of which the elec­
tronic structure of crystals can be investigated from first 
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principles. Bloch5 in 1928 constructed electronic states 
symmetry adapted with respect to periodic potentials. 
Bethe6 in 1929 gave an original band theory based on 
the symmetry properties of crystals. The theory of 
little groups, which is of basic interest for the symmetry 
of crystals, was considered first by Bouckaert, 
Smoluchowski, and Wigner7 and by Herring.8 The 
theory of irreducible representations of space groups 
have been thoroughly investigated recently by 
Mcintosh,9-10 Koster,11 Zak,12 and Raghavacharyulu.13 

Zak is constructing irreducible characters and Ragha­
vacharyulu is tabulating full irreducible representations 
for all the 230 crystallographic space groups. When 
spin is taken into account, the so-called "double space 
groups" must be considered, containing many addi­
tional representations. These have been considered 
originally by Elliott.14 In a review article by Johnston15 

in 1960 the relation between the double group and the 
homogeneous Lorentz group of rotations in four-
dimensional space has been considered in the non-
relativistic limit. 

Elementary introductions to crystal symmetry and 
energy bands are found in several textbooks.2,3,4,16'17 

Many good review articles on group theory and band 
structure calculations in solids also occur, among others 
by Herman,18 who gives a good survey of the many 

5 F. Bloch, Z. Physik 52, 555 (1928). 
6 H . A. Bethe, Ann. Physik 3, 133 (1929). 
7 L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. 

Rev. 50, 58 (1936). 
8 C. Herring, Phys. Rev. 52, 361 (1937). 
9 H. V. Mcintosh, J. Mol. Spectry. 5, 269 (1960). 
10 H. V. Mcintosh, J. Math. Phys. 1, 453 (I960). 
11 G. F. Koster, in Solid State Physics, edited by F. Seitz and 

D, Turnbull (Academic Press Inc., New York, 1957), Vol. 5, 
p. 173. 

12 J. Zak, J. Math. Phys. 1, 165 (1960). 
1 3 1 . V. V. Raghavacharyulu, J. Mol. Spectry. 7, 341 (1961). 
14 R. J. Elliott, Phys. Rev. 96, 280 (1954). 
15 D. F. Johnston, Rept. Progr. Phys. 23, 66 (1960). 
16 H. Jones, The Theory of Brillouin Zones and Electronic States 

in Crystals (North-Holland Publishing Company, Amsterdam, 
1960). 

17 P. H. E. Meijer and E. Bauer, Group Theory. The Application 
to Quantum Mechanics (North-Holland Publishing Company, 
Amsterdam, 1962). 

18 F. Herman, Rev. Mod. Phys. 30, 102 (1958). 
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methods occurring. Pincherle19 gives a comprehensive 
list of references. Sokolov and Shirokovskii20 also re­
cently gave a comprehensive review on the subject, 
which was a continuation of a similar paper considering 
point group symmetry.21 Symmetry properties of the 
localized Wannier functions22 in energy band theory 
have been studied by des Cloizeaux.23 

Among the methods of applied band theory the 
simplest one is based on the free-electron model origi­
nally given by Bethe24 and further considered by 
Brillouin.25 On account of its great simplicity, this 
theory is also used in recent applications,26 although 
the results obtained only have qualitative value. A 
considerable improvement is introduced with orthogo-
nalization with respect to the core states. This is done 
in the orthogonalized plane wave (OPW) method intro­
duced by Herring27 in 1940 and thoroughly discussed by 
Woodruff.28 This method has many recent applica­
tions,29,30 although the states of high symmetry, auto­
matically orthogonal to the core states, show up a low 
convergence. The cellular method, originally given by 
Wigner and Seitz31 in 1933 and applied among others 
by Altmann,32 shows up similar difficulties. The auto­
matically orthogonalized plane wave (APW) method, 
introduced by Slater33 in 1937, takes the advantages of 
both these methods and is used frequently with quan­
titatively very good accuracy in comparison with the 
computational efforts involved.34 

The tight-binding method comes very close to the 
Hartree-Fock theory used for electronic states of atoms 
and molecules. Generally, therefore, the method is very 
laborious when applied to crystals, even though effective 
one-electron potentials have to be used. This is due to 
the fact that a large number of molecular integrals must 
be calculated. In its simplest version given by Bloch5 

in 1928, each energy band is related to a certain atomic 
orbital. This is, however, not a very good description 
of the valence states. Serious errors may also occur 
because of the nonorthogonality of the atomic orbitals, 

19 L. Pincherle, Rept. Progr. Phys. 23, 355 (1960). 
20 A. V. Sokolov and V. P. Shirokovskii, Usp. Fiz. Nauk 71, 

485 (1960) [translation: Soviet Phys.—Uspokhi 3, 551 (1961)]. 
21 A. V. Sokolov and V. P. Shirokovskii, Usp. Fiz. Nauk 60, 617 

(1956). 
22 G. H. Wannier, Phys. Rev. 52, 191 (1937). 
23 J. des Cloizeaux, Phys. Rev. 129, 554 (1963). 
24 H. Bethe, Ann. Physik 87, 55 (1928). 
25 L. Brillouin, Compt . Rend. 191, 198, 292 (1930); J . Phys . 

Radium 1, 377 (1930). 
26 J. C. Slater, G. F. Koster, and J. H. Wood, Phys. Rev. 126, 

1307 (1962). 
27 C. Herring, Phys. Rev. 57, 1169 (1940). 
28 T. O. Woodruff, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1957), Vol. 4, 
p. 367. 

29 W. A. Harrison, Phys. Rev. 129, 2503, 2512 (1963). 
30 F. Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963). 
31 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933). 
32 S. L. Altmann, Proc. Roy. Soc. (London) A244, 141, 153 

(1958). 
33 J. C. Slater, Phys. Rev. 51, 846 (1937). 
34 G. A. Burdick, Phys. Rev. 129, 138 (1963). 

as was pointed out by Lowdin35 in 1950. He therefore 
proposed a method of orthogonalization of the atomic 
orbitals by means of the overlap matrix,35 which is an 
alternative way of constructing Wannier functions. 
This method is, however, extremely laborious. Lowdin36 

has also recently given a survey of band theory, valence 
bond, and tight-binding calculations. 

An extension of the tight-binding method is done by 
introducing hydridization, which was done for example 
by Longuet-Higgins and de V. Roberts37 for metal 
borides of cubic symmetry. This version of the tight-
binding method is, however, still far from being accu­
rate due to approximations such as neglect of all but 
nearest neighbors, supposition of effective energy ele­
ments being proportional to the corresponding overlap 
elements, the use of Slater atomic orbitals of free atoms 
in the ground state only. Approximations of this kind 
occur frequently in tight-binding calculations. The con­
sideration of distant neighbors, exact calculation of 
molecular integrals involved, and the inclusion of 
excited atomic states of high symmetry have shown to 
be very important and will change even the qualitative 
picture of the energy bands quite a lot. This was found 
by the author in calculations for the same compound.38,39 

So far, this is the most accurate calculation done for 
this crystal, although it has also been treated with other 
methods.40 Effective charges depending on the radial 
distance and the considered atomic orbital are also 
introduced in the one-electron Hamiltonian. The limi­
tation indicated by the name "tight binding" does not 
have significance any longer in this modification of the 
method, and a better name is therefore the MO-LCAO 
method. The extension to include excited free-atom 
states in the basis corresponds closely to the use of 
orthogonalized plane waves. The convergence is more 
rapid than it is for plane waves, provided that the orbi­
tal exponents are chosen in a suitable way in order not 
to cause too large overlap, which would lead to the 
difficulties pointed out by Lowdin.35 I t was found that 
the orbital exponents for excited orbitals should be 
taken several times larger than the case would be in a 
free atom, where they may be chosen according to 
Slater's rules, and, furthermore, they depend on the k 
vector. 

Certainly the procedure of calculation using this 
method is extremely time wasting, and, preferably, one 
would use an electronic computer for the complete 
computing procedure. A program has now been written 
for energy-band calculations in zirconium oxides of 
close-packed hexagonal symmetry. This program was 
constructed by the author for the Swedish electronic 
computer BESK, and has taken more than three years 

35 P. O. Lowdin, J. Chem. Phys. 18, 365 (1950). 
36 P. O. Lowdin, J. Appl. Phys. 33, 251 (1962). 
37 H. C. Longuet-Higgins and M. de V. Roberts, Proc. Roy. Soc. 

(London) A224, 336 (1954). 
38 S. Flodmark, Arkiv Fysik 14, 513 (1959). 
39 S. Flodmark, Arkiv Fysik 18, 49 (1960). 
40 M. Yamazaki, J. Phys. Soc. Japan 12, 1 (1957). 
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to write. I t may, however, serve as a basis for future 
calculations by means of the MO-LCAO method. 

This program will also take care of symmetry trans­
formations of the secular determinants, provided that 
the appropriate linear combinations are prescribed in 
certain data lists. I t is the purpose of the present paper 
to give a formal method of obtaining these results. A 
preliminary paper on the subject was published by the 
author in 1962.41 The theory has also been presented in 
parts at the Uppsala Conference in Quantum Chemistry 
in August 1960, at the Winter School of Quantum 
Chemistry and Solid-State Physics in Florida in 
January 1962, and also at the Latin American School of 
Physics in Mexico in July 1962.42 

2. GENERAL THEORY 

Consider a symmetry group G of order g. An arbi­
trary group element is denoted by P and the ninth 
matrix element of the jth. unitary irreducible repre­
sentation of P is denoted by 3Pmn. The order of this 
matrix is denoted by lj. I t is well known that the / / 
operators 

lj «7) 

« • « » = - 2 2 jP™*P (1) 
g p 

fulfill the relations 

This is a direct consequence of the orthogonality rela­
tions in group theory. 

Using equal indexes, m=n, in (1), the Wigner1 pro­
jection operators are obtained. The Hermitian and 
idempotent properties of these operators follow from 
(1) and (2): 

^~> nn ^>nnj <-> nn — ^nn* \*->) 

Let us introduce an arbitrary set of basis vectors, 

* = ( * i , * 2 , • • • ) , (4) 

in a vector space invariant under G, i.e., 

P<t>i=Hk4>kPki\ all P E G . (5) 

The matrix representative P = (Pki) of P is, in general, 
reducible. The application of the X j h different Wigner 
projection operators will provide the projections of (4) 
onto its irreducible subspaces. We are looking for a 
linear transformation reducing this basis. 

The projection matrix 

« » » = - E ' P » „ * P (6) 
g p 

represents the Wigner operator in the basis (4) 

3Snn$= frSnn. (7 ) 

41 S. Flodmark, Arkiv Fysik 21, 89 (1962). 
42 S. Flodmark, Scientific Technical Reports, written under a 

contract with the U. S. Army, available at the Institute of Theo­
retical Physics, University of Stockholm, Stockholm, Sweden. 

Like the projection operator itself, it is Hermitian and 
indempotent; 

St=S , S 2 = S . (8) 

The symmetry-type indexes j and n will be dropped 
from now on, when no misunderstanding can occur. 
The first relation in* (8) provides that there is a unitary 
transformation T which diagonalizes S. The second 
relation says that the eigenvalues can be only 1 or 0: 

/ l 0\ 
T+ST=( W E . (9) 

\ 0 0/ 

From (9) we see that 

ST=TE=( t , 0 ) , (10) 

where t is the rectangular part of T consisting of the 
columns of unit eigenvalue: 

S t = t . (11) 

Transforming the basis (4) by means of S as in (7) 
yields a symmetry adaption, but not always a complete 
reduction, since the singular matrix S in general con­
tains nonvanishing nondiagonal elements and, there­
fore, may yield several redundancies in the form of 
linear dependencies of the transformed basis vectors. 
Transforming further by means of T, however, these 
redundancies are removed. Thus, a complete reduction 
is obtained by means of (10). Finally on account of 
(11), it is sufficient to use the rectangular matrix t 
instead of S for a complete symmetry reduction onto 
the basis of symmetry type (j,n). A set of independent 
basis vectors of the subspace of symmetry type (j,n) is 
thus given by the reduced row matrix 0t. 

The problem now arises how to find the rectangular 
matrix t. Given the Hermitian matrix S, this certainly 
is of no principal difficulty, using standard methods of 
diagonalization. I t is, however, possible to find this 
matrix more directly using the idempotent property of 
the projection matrix. 

For this purpose we introduce the notation S„ for 
the yth column of S and SM for the juth row, being the 
Hermitian conjugate of SM. Since S 2 =S , apparently the 
columns Sv are eigencolumns of S with the eigenvalue 1, 
thus, fulfilling the relation (11) with t=S„ . These 
columns are, however, generally not orthonormal, 
since SJSv=SftSv=Sllv are the elements of the S 
matrix, which is generally not diagonal. The normaliza­
tion, however, is easily done by introducing 

t M = ( 5 „ ) - ^ S , . (12) 

The condition of linear independency is fulfilled for 
those eigencolumns (12) satisfying the orthogonality 
relations 

t ^ t ^ ^ , ^ . ) - 1 ^ ^ , . (13) 

The first part of (13) follows from (12); the second part 
is true only if 5 ^ = 0 for fx^v. A nonvanishing SM„ will 
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therefore tell us that the juth and vih eigencolumns (12) 
are nonorthogonal, and thus involved in a linear 
relationship 

t^Y^t.S^SjS^. (14) 

Since all the nonvanishing eigenvalues of S are equal 
to 1, the rank of S is given by its trace, which is thus the 
number of independent t columns wanted. To see how 
these columns can be found most rapidly, consider first 
some simple properties of S. From the general relations 
(8) it is found that 

Any diagonal element Svv— 1 or 0 thus provides vanish­
ing nondiagonal elements in the corresponding row and 
column. Therefore, the corresponding basis vectors 
need no transformation, being either completely inside 
or outside the symmetry-adapted subspace. The re­
maining subspace may then be divided further into 
subspaces corresponding to the different subblocks of 
S involved in linear relationships (14). The elements in 
such a submatrix fulfill the inequalities 

0<S„<1\ \S^\<i (ji?*v), (16) 

as follows from (15). When the trace of a submatrix is 
equal to 1, only one t column (12) is needed. If the trace 
is larger than or equal to 2, the first t column can be 
chosen arbitrarily. The remaining columns, t', may be 
orthogonalized to t using the Schmidt procedure of 
successive transformations 

t^=cf— (t+oa (i — i t+f 12)-i/a —> t', (17) 
t", when different from zero, still being an eigencolumn 
of (11) with the eigenvalue 1. The orthogonalization 
procedure is repeated for the remaining columns until 
a sufficient number of nonvanishing eigencolumns t are 
obtained. 

For each symmetry type (j,n) a rectangular matrix t 
can thus be constructed according to the general pro­
cedure just given, each containing Tr(S) columns. The 
order of S is equal to the sum of Tr(S) over all the dif­
ferent symmetry types. The square matrix formed by 
putting together all the rectangular t matrices for dif­
ferent symmetry types (j,n) yields the total symmetry 
reduction of the reducible basis (4). 

3. POINT SYMMETRY IN THE MO-LCAO THEORY 

The method outlined in Sec. 2 is applicable to any 
symmetry group and to any trial basis set, which may 
be used in applied quantum mechanics to describe a 
physical system obeying the Schrodinger equation. In 
the quantum theory of atoms and molecules, one may 
start with a basis set of one-electron trial functions out 
of which the many-electron wave functions may be con­
structed and symmetry adapted with respect to space 
and permutation symmetry. The first step in this pro­

cedure may be the construction of space orbitals sym­
metry adapted with respect to the actual space group. 
We consider this problem here. 

In the case of atoms, the states belonging to the ir­
reducible representations of the group of pure rotations 
in three-dimensional space are, as is well known, the 
spherical harmonics. The potential felt by an electron 
in a molecule or crystal does not have spherical sym­
metry. Therefore, a set of spherical harmonics with 
respect to any atomic center is generally reducible under 
the actual molecular space group. 

In the ordinary MO-LCAO theory, the trial basis is a 
set of atomic orbitals centered at all the different atoms 
in the molecule. The same treatment can be done for 
electrons moving in part of a crystal, which may consist 
of several atoms, in a molecular arrangement of a 
certain point-group symmetry. In this case the states 
must be symmetry adapted with respect to the point 
group of the molecular arrangement and the ligand-field 
potential. For general references on group theory and 
crystal-field theory we refer to a recent review article 
by Hertzfeld.43 

Suppose our molecular arrangement contains a 
number of different chemical elements, which we denote 
by A, B, C, • • •. Each chemical element, A, may occur 
in different positions A', A", •••. Let us use trun­
cated basis sets for each atomic center. In accordance 
with the MO-LCAO method, then 

$=($A', $A",'—, $B>, $B",-",) (18) 

forms a basis for our approximate treatment. Suppose 
further that P is an element of the spatial point group 
Gp leaving the Hamiltonian invariant. Then the atom 
at A' is transformed into another position A" = P(A') by 
means of P, where A' and A" are atomic centers of the 
same chemical element A. Let us introduce a block-
diagonal matrix P, the blocks being supermatrices 
T?(A) for each chemical element A : 

p p ) • ( 19 ) 

The submatrices T*A>>A' in (19), defined by 

¥A"A' = 1PASA", P(A') (20) 

vanish unless P(A') = A". Thus, only one submatrix is 
different from zero in each row and in each column. 
The matrix P A in (20) is the one representing P in the 
atomic basis of the chemical element A, when P is re­
ferred to the same center as A. Using spherical har­
monics, thus PA is a block-diagonal matrix, the blocks, 
P A ( £ ) , being labeled by the angular momentum, L. 
This is a consequence of the fact that any point-group 
element can be written as a pure rotation, or a pure ro-

43 C. M. Hertzfeld and P. H. E. Meijer, in Solid State Physics, 
edited by F. Seitz and D. Turnbull (Academic Press Inc., New 
York, 1961), Vol. 12, p. 1. 
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tation times the inversion operator commuting with any 
rotation. The matrix P just defined is easily seen to be 
the representative of P in the basis (18). Diagonally 
placed subblocks of P are obviously labeled by the two 
indexes A and L. 

The projection matrix (6) using this P matrix will, 
thus, also be block diagonal with respect to A and L. 
The diagonalization procedure of S, described in Sec. 2, 
can therefore be performed separately for each A and L 
value. This means that S can be considered as a function 
of the four indexes j , n, A, and L. Still it has the matrix 
structure (19) and the submatrices, being of order 
2 L + 1 , are given by 

V$nn(A,L)}A,A„=- (C?x; } >'pnn*rA(L), (21) 
g p 

where the sum runs over the subset GA'A" of Gp con­
taining all elements P£zGP, satisfying P(A") = A'. 

The necessary diagonal elements, 3'Pnn, of the ir­
reducible representations can be found in the literature 
for all point groups. Melvin44 has given such tables in a 
paper concerning a factoring of the projection operator. 
Explicit formulas for P^(L), the possible A dependence 
coming only from the possibility of permitting the 
maximum L value to depend on A, have been given 
earlier by the author for L<3 in terms of elements of 
the corresponding three-dimensional transformation 
matrix.38,42 

The matrices (21) can thus be easily obtained by 
straightforward calculation for all the different index 
values occurring. The reduced symmetry-adapted basis 
can then be found according to the preceding section. 

4. BAND THEORY AND SPATIAL SYMMETRY 

Another interesting field for application of the 
methods in Sec. 2 is the solid-state theory. The elec­
tronic states in the band theory of crystals must be 
symmetry-adapted with respect to the total crystal 
space group. The author has treated this problem in a 
previous paper.41 A further development of the final 
formula for the projection matrix will be presented 
here. Among others it has been block-diagonalized with 
respect to different chemical elements. In addition, a 
general program has been constructed for its computa­
tion by means of the electronic computer IBM 7090. 

The representation theory for the crystallographic 
space groups is well known, and, therefore, the present 
investigation presumes all irreducible representations 
to be known. As a matter of fact, a complete tabulation 
of irreducible representations for all the 230 crystallog­
raphic space groups is under performance by 
Raghavacharyulu, who has also given a general method 
for their calculation.13 For applications of the present 
method these tables are going to be extremely valuable, 
since tables of irreducible characters, being prepared by 

44 M. A. Melvin, Rev. Mod. Phys. 28, 20 (1956). 

Zak12 are not sufficient for doing complete symmetry 
reductions, but their usefulness is limited mainly to the 
investigation of reducibility of representations. 

As is well known, the crystallographic space group, 
G, is a so-called semidirect product group.9,10 The group 
GT of unit cell translations, being an invariant sub­
group, has one-dimensional representations only, which 
are labeled by the reduced wave vector, k. 

The irreducible representations of the full crystal 
group are divided into submatrices, labeled by different 
prongs of the so-called "star" of k, caused by operating 
on k with all elements P of the empty-lattice point 
group Gp.11 There is only one submatrix of this kind in 
diagonal position, which does not vanish for all group 
elements, and the only elements which give a contribu­
tion are those of the 'Tittle group," or the "group of the 
wave vector," Gk-4'7,11 This is defined as the elements of 
G which are homomorphous with point-group elements 
P^Gp satisfying 

P(k) = k + K , (22) 

where K is a unit-zone translation in the reciprocal 
lattice. I t is therefore true, as is well known, that it is 
sufficient to perform the symmetry adaptions with 
respect to the little groups of each k vector. This is con­
sistent with the fact that the projection operator of the 
kth irreducible representation of GT commutes with the 
projection operators of all the irreducible representa­
tions of the factor group F^G^/GT. Forming a Bloch 
basis6 of wave vector k, the remaining symmetry adap­
tion, therefore, has to be done with respect to F*y 

which is a finite group isomorphous with the point 
group Gp of the empty lattice. In the special case of a 
symmorphic space group, the factor group actually is a 
point group, but in the nonsymmorphic case, screw 
axes and glide reflection planes occur. I t is always 
possible, however, to label the factor-group elements, 
FtEFbj by means of isomorphous point-group elements, 
PGGp. We denote by d the fractional-cell displacement, 
the translation Td of which commutes with P and yields 
a factor-group element 

F=P'Td=Td'P^(d,P). (23) 

In the tight-binding or MO-LCAO approximation, we 
use a Bloch basis analogous to (18) for each atom in the 
unit cell, 

tfck= (ifcii'k, t lu"k, * • • ifcjs'k, ifcs"k, * * *) , (24) 

where 
tti 'k(r) oc £ n e ^ ( r - n ~ a ' ) 

is a basis of Bloch functions of atom A', the contribution 
coming from all the atomic bases ^ with the same 
atomic-center position vector a' with respect to different 
unit cell vectors n. The "little coset," GA'A"k, pre­
viously introduced by the author,41 is defined as the 
subset of Gp, the elements P of which satisfy 

P ( a " + d ) = a '+ iU 'A" p ; F = P-Td£Fk. (25) 
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The little coset is, thus, analogous to the set GA'A" 
introduced in (20), although in the present case a pos­
sible unit-cell displacement toArA"p can be connected 
with the transformation between two different positions 
of the chemical element A. I t has to be observed that 
no group element can combine two different chemical 
elements in this way. 

In analogy to (19), we can now introduce the matrix 
F k representing F in the basis (24). I t is a block-
diagonal matrix, the blocks ¥k(A) being labeled by the 
chemical elements A : 

fF 

F%4) = 

A A 

(26) 

The submatrices of (26) are given by 

VA'A"k=J>A expi-iknA'A-nHA'fiA")), (27) 

where the Kronecker 5 symbol vanishes unless A' and 
A" are related to P according to (25). The matrix ¥A 
is the same as in (20), and it is block diagonal in the 
azimuthal quantum number L. 

A straightforward calculation now yields the sym­
metry projection matrix S, labeled by the symmetry-
type indexes j , n, and k and by the block-diagonal 
indexes A and L. The submatrix analogous to (21) is 
given by 

h k ((? 
{*Snn(A,L)}A.A., = — L exp(-iknA'A»p) 

gk P X*Fnf*?A(L). (28) 

Here jkFnn are diagonal elements of the jth irreducible 

representation of the factor group F k , and the sum is 
extended over the little-coset elements. The order of 
Fk is denoted by gk and the dimension of its jth ir­
reducible representation is denoted by /yk-

As is seen, the main difference from the molecular 
case appears in the exponential factor occurring in 
(28). Choosing k = 0 , the molecular case is obtained as a 
special case. Also the case with only one atomic center, 
occurring in the ordinary ligand-field theory, is a special 
case, the little coset being put equal to the total point 
group in this case. Equation (28), therefore, represents 
the most general case for the treatment of space sym­
metry in the MO-LCAO theory of atoms, molecules, 
and crystals. 

Since applications to (28) generally are very hard to 
perform by hand, a certain program for its calculation 
by means of the electronic computer IBM 7090 has 
been constructed by the author in FORTRAN lan­
guage.42 This program also takes care of the reduction of 
the projection matrix according to Sec. 2. Since it 
operates in the core memory of the computer only, it is 
limited to the following maximum values of ingoing 
quantities: 48 elements of the empty-lattice point 
group, 50 wave vectors, 30 little groups, 25 irreducible 
representations per little group, 6 chemical elements 
per unit cell, 5 atoms per chemical element and unit 
cell, and 4 shells of spherical harmonics (s,p,d,f). An 
unlimited number of different substances can, however, 
be symmetry adapted at the same machine run. 
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